
GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Geosci. Model Dev. Discuss., 7, 8031–8077, 2014
www.geosci-model-dev-discuss.net/7/8031/2014/
doi:10.5194/gmdd-7-8031-2014
© Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Geoscientific Model
Development (GMD). Please refer to the corresponding final paper in GMD if available.

Development of efficient GPU
parallelization of WRF Yonsei University
planetary boundary layer scheme

M. Huang1, J. Mielikainen1, B. Huang1, H. Chen1, H.-L. A. Huang1, and
M. D. Goldberg2

1Space Science and Engineering Center, University of Wisconsin-Madison, Madison, USA
2NOAA/JPSS, Lanham, MD 20706, USA

Received: 17 September 2014 – Accepted: 20 October 2014 – Published: 21 November 2014

Correspondence to: B. Huang (bormin.huang@ssec.wisc.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

8031

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

The planetary boundary layer (PBL) is the lowest part of the atmosphere and where its
character is directly affected by its contact with the underlying planetary surface. The
PBL is responsible for vertical sub-grid-scale fluxes due to eddy transport in the whole
atmospheric column. It determines the flux profiles within the well-mixed boundary layer5

and the more stable layer above. It thus provides an evolutionary model of atmospheric
temperature, moisture (including clouds), and horizontal momentum in the entire at-
mospheric column. For such purposes, several PBL models have been proposed and
employed in the weather research and forecasting (WRF) model of which the Yonsei
University (YSU) scheme is one. To expedite weather research and prediction, we have10

put tremendous effort into developing an accelerated implementation of the entire WRF
model using Graphics Processing Unit (GPU) massive parallel computing architecture
whilst maintaining its accuracy as compared to its CPU-based implementation. This
paper presents our efficient GPU-based design on WRF YSU PBL scheme. Using one
NVIDIA Tesla K40 GPU, the GPU-based YSU PBL scheme achieves a speedup of15

193× with respect to its Central Processing Unit (CPU) counterpart running on one
CPU core, whereas the speedup for one CPU socket (4 cores) with respect to one
CPU core is only 3.5×. We can even boost the speedup to 360× with respect to one
CPU core as two K40 GPUs are applied.

1 Introduction20

The science of meteorology explains observable weather events, and its application
is weather forecasting. Nowadays, sophisticated instruments are used for observa-
tions from upper air atmosphere. The collected quantitative data about the current
state of the atmosphere are then used to predict future states. This requires the
aid of equations of fluid dynamics and thermodynamics that are based on laws of25

physics, chemistry, and fluid motion. The weather research and forecasting (WRF)

8032

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(http://www.wrf-model.org/index.php) model meets such a requirement, which is a sim-
ulation program consisting of several different physical processes and dynamic solvers.
It is designed to serve the needs of both operational forecasting and atmospheric re-
search.

The WRF system supports some of the best possible models for weather forecasting.5

Nevertheless, a continual challenge for timely weather forecasting is forecast model
execution speed. This is a challenge even with the fastest supercomputers, in particular
for severe weather events.

With the advent of GPU architectures, the execution speed of weather forecasting
models can be greatly increased by taking advantage of the parallelism feature of10

GPUs. GPUs have hundreds of parallel processor cores for execution on tens of thou-
sands of parallel threads. Furthermore, GPUs possess several merits, such as low
cost, low power, large bandwidth, and high performance. These make GPUs more ef-
fective than a massively parallel system built from commodity CPUs. Usage of GPUs
has been applied very successfully to deal with numerous computational problems in15

various domains, for instance, porting marine ecosystem model spin-up using trans-
port matrices to GPUs (Siewertsen et al., 2013), GPU-accelerated longwave radiation
scheme of the rapid radiative transfer model for general circulation nodels (RRTMG)
(Price et al., 2014), advances in multi-GPU smoothed particle hydrodynamics simu-
lations (Rustico et al., 2014), speeding up the computation of WRF double moment20

6-class microphysics scheme with GPU (Mielikainen et al., 2013), real-time implemen-
tation of the pixel purity index algorithm for endmember identification on GPUs (Wu
et al., 2014), fat vs. thin threading approach on GPUs: application to stochastic simula-
tion of chemical reactions (Klingbeil et al., 2012), ASAMgpu V1.0 – a moist fully com-
pressible atmospheric model using graphics processing units (GPUs) (Horn, 2012),25

GPU acceleration of predictive partitioned vector quantization for ultraspectral sounder
data compression (Wei, 2011), clusters vs. GPUs for parallel automatic target detec-
tion in remotely sensed hyperspectral images (Paz et al., 2010), a GPU-accelerated

8033

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.wrf-model.org/index.php

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

wavelet decompression system with SPIHT and Reed-Solomon decoding for satellite
images (Song, 2011), to name several.

To expedite weather analysis research and forecasting, we have put tremendous
efforts into developing an accelerated implementation of the entire WRF model using
Graphics Processing Unit (GPU) massive parallel architecture whilst maintaining its ac-5

curacy as compared to its CPU-based implementation. This study develops an efficient
GPU-based design on the Yonsei University (YSU) planetary boundary layer scheme,
which is one of physical models in WRF. The PBL is responsible for vertical sub-grid-
scale fluxes due to eddy transports in the whole atmospheric column. It determines the
flux profiles within the well-mixed boundary layer and the more stable layer above, and10

thus provides an evolutionary model of atmospheric temperature, moisture (including
clouds), and horizontal momentum in the entire atmospheric column.

This paper is structured as follows. Section 2 describes YSU PBL scheme. Section 3
outlines the GPU hardware specification as well as a brief description of the basis
of CUDA computing engine for GPUs. The GPU-based implementation is also given in15

Sect. 3. The development of optimizing the GPU-based YSU PBL scheme is presented
in Sect. 4. Summary and future work is given in Sect. 5.

2 YSU PBL scheme

The scheme of YSU is one of the PBL models in WRF. The PBL process is illustrated
in Fig. 1. Based on reference (Hong et al., 2006), a brief description of the YSU PBL20

scheme is presented below.

8034

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.1 Mixed-layer diffusion

The momentum diffusivity coefficient is formulated based on the work done in refer-
ences (Troen et al., 1986; Hong et al., 1996; Noh et al., 2003):

Km = kwsz
(

1− z
h

)p
, (1)

where p is the profile shape exponent taken to be 2, k the von Karman constant (= 0.4),5

z the height from the surface, and h the PBL height. The mixed-layer velocity scale is
given as

ws =
(
u3
∗ +ϕmkw

3
∗bz/h

)1/3
, (2)

where u∗ is the surface frictional velocity scale, ϕm the wind profile function evaluated
at the top of the surface layer, and w∗b the convective velocity scale for the moist air10

which is defined as

w∗b =
[
(g/θva)

(
w ′θ′v

)
0h
]1/3

.

The counter-gradient term for θ and momentum is given by

λc = b

(
w ′θ′v

)
0

ws0h
, (3)

where (w ′θ′v)0 is the corresponding surface flux for θ, u, and v , and b the coefficient15

of proportionality which will be derived below. The mixed-layer velocity scale ws0 is
defined as the velocity at z = 0.5h in Eq. (2).

The eddy diffusivity for temperature and moisture Kt is computed from Km in Eq. (1)
by using the relationship of the Prandtl number (Noh et al., 2003), which is given by

Pr = 1+ (Pr0 −1)exp[−3(z−εh)2/h2], (4)20

8035

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where Pr0 = (ϕt/ϕm+bkε) is the Prandtl number at the top of the surface layer given
by references (Troen et al.,1986; Hong et al., 1996). The ratio of the surface layer height
to the PBL height, ε, is specified to be 0.1.

To satisfy the compatibility between the surface layer top and the bottom of the PBL,
identical profile functions are used to those in surface layer physics. First, for unstable5

and neutral conditions [(w ′θ′v)0 ≥ 0],

ϕm =
(

1−16
0.1h
L

)−1/4

for u and v , (5a)

ϕt =
(

1−16
0.1h
L

)−1/2

for θ and q, (5b)

while for the stable regime [(w ′θ′v)0 < 0],

ϕm =ϕt =
[

1+5
0.1h
L

]
, (6)10

where h is, again, the PBL height, and L the Monin Obukhov length scale. To determine
the factor b in Eq. (3), the exponent of −1/3 is chosen to ensure the free convection
limit. Typically L ranges from −50 to 0 in unstable situations. Therefore, we can use the
following approximation:

ϕm =
(

1−16
0.1h
L

)−1/4

'
(

1−8
0.1h
L

)−1/3

. (7)15

Following the work in references (Noh et al., 2003; Moeng et al., 1994), the heat flux
amount at the inversion layer is expressed by(
w ′θ′

)
h
= −e1w

3
m/h, (8)

8036

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where e1 is the dimensional coefficient (= 4.5 m−1 s2K), wm the velocity scale based
on the surface layer turbulence (w3

m = w3
∗ +5u3

∗), and the mixed-layer velocity scale for

the dry air w∗ = [(g/θa)(w ′θ
′
0)h]1/3. Using a typical value of θa at 300 K, the gravity at

10 ms−2, and the limit of u∗ = 0 in the free convection limit, Eq. (8) can be generalized
for the moist air with a non-dimensional constant, which can be expressed by5 (
w ′θ′v

)
h
= −0.15

(
θva
g

)
w3
m/h, (9)

where wm considers the water vapor driven virtual effect for buoyancy flux. Given the
buoyancy flux at the inversion layer, Eq. (9), the flux at the inversion layer for scalars θ
and q, and vector quantities u and v , are proportional to the change in each variable
at the inversion layer:10 (
w ′θ′

)
h
= we∆θ|h, (10a)(

w ′q′
)
h
= we∆q|h, (10b)(

w ′u′
)
h
= Prhwe∆u|h, (10c)(

w ′v ′
)
h
= Prhwe∆v |h, (10d)

respectively. Here we is the entrainment rate at the inversion layer, which is expressed15

by

we =

(
w ′θ′v

)
h

∆θv |h
, (11)

where the maximum magnitude of we is limited to wm to prevent excessively strong
entrainment in the presence of too small of a jump in θv in the denominator. The Prandtl

8037

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

number at the inversion layer Prh is set as 1. Meanwhile, the flux for the liquid water
substance at the inversion layer is assumed to be zero.

Following the reference (Hong et al., 1996), h is determined by checking the sta-
bility between the lowest model level and levels above considering the temperature
perturbation due to surface buoyancy flux, which is expressed by,5

θv (h) = θva +θT

[
= a

(w ′θ′v)0

ws0

]
, (12)

where a is set to 6.8, the same as the b factor in Eq. (3). In Eq. (2), θT ranges less than
1 K under clear-sky condition where θv (h) is the virtual potential temperature at h. The
quantity a is an important parameter in the new scheme. Numerically, h is obtained by
two steps. First, h is estimated by10

h = Ribcr
θva|U(h)|2

g[θv (h)−θs]

without considering θT , where Ribcr is the critical bulk Richardson number, U(h) the
horizontal wind speed at h, θva the virtual potential temperature at the lowest model
level, θv (h) the virtual potential temperature at θv (h), and θs the near the surface tem-
perature. This estimated h is utilized to compute the profile functions in Eqs. (5)–(7),15

and to compute the ws0, which is estimated to be the value at z = h/2 in Eq. (2). Sec-
ondly, using ws0 and θT in Eq. (12), h is revised by checking the bulk stability, Eq. (12),
between the surface layer (lowest model level) and levels above. With the revised h
and ws0, Km is obtained by Eq. (1), entrainment terms in Eqs. (9)–(11), and Kt by the
Prandtl number in Eq. (4). The counter gradient correction terms for θ in Eq. (4) are20

also obtained by Eq. (3).

2.2 Free atmosphere diffusion

The local diffusion scheme, the so-called local K approach (Louis, 1979) is utilized for
free atmospheric diffusion above the mixed layer (z > h). In this scheme, the effects of

8038

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

local instabilities in the environmental profile and the penetration of entrainment flux
above h irrespective of local stability are both taken into account within the entrainment
zone and the local K approach above.

In the reference (Noh, 2003), the diffusion coefficients for mass (t : θ,q) and momen-
tum (m : u,v) are expressed by5

Kt_ent =
−
(
w ′θ′v

)
h

(∂θv/∂z) h
exp

[
−

(z−h)2

δ2

]
, (13a)

Km_ent = Prh
−
(
w ′θ′v

)
h

(∂θv/∂z) h
exp

[
−

(z−h)2

δ2

]
, (13b)

and the thickness of the entrainment zone can be estimated as

δ/h = d1 +d2Ri−1
con, (14)

where wm is the velocity scale for the entrainment, Ricon the convective Richardson10

number at the inversion layer: Ricon = [(g/θva) h ∆θv_ent]/w
2
m, and constants d1 and d2

are set as 0.02 and 0.05, respectively.
Following references (Noh, 2003; Louis, 1979), the vertical diffusivity coefficients for

momentum (m : u,v) and mass (t;θ,q) above h are represented as,

Km_loc,t_loc = l
2fm,t(Rig)

(
∂U
∂z

)
, (15)15

in terms of the mixing length l , the stability function fm,t(Rig), and the vertical wind
shear, |∂U/∂z|. The stability functions fm,t are represented in terms of the local gradient
Richardson number Rig. For the non-cloudy layer,

Rig =
g
θv

[
∂θv/∂z

(∂U/∂z)2

]
. (16a)

8039

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

For the cloudy air, Rig is modified for reduced stability within cloudy air, which is ex-
pressed by (Durran et al., 1982)

Rigc =
(

1+
Lvqv
RdT

)[
Rig−

g2

|∂U/∂z|2
1
cpT

(A−B)

(1+A)

]
, (16b)

where A = L2
vqv/cpRvT

2 and B = Lvqv/RdT . The computed Rig is truncated to −100
to prevent unrealistically unstable regimes. The mixing length scale l is given by5

1
l
=

1
kz

+
1
λ0

, (17)

where k is the von Karman constant (= 0.4), z the height from the surface, and λ0 is
the asymptotic length scale (= 150 m) (Kim et al., 1992). The stability function, fm,t(Rig),
differ for stable and unstable regimes. The stability formulas from NCEP MRF model
(Betts et al., 1996) are used. For the stably stratified free atmosphere (Rig > 0),10

fm,t(Rig) =
1

(1+5Rig)2
, (18)

and the Prandtl number is given by,

Pr = 1.0+2.1 = Rig. (19)

For the neutral and unstably stratified atmosphere (Rig ≤ 0),

ft(Rig) = 1−
8Rig

1+1.286
√
−Rig

, (20a)15

fm(Rig) = 1−
8Rig

1+1.746
√
−Rig

. (20b)

8040

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

For the entrainment zone above h, the diffusivity is determined by geometrically aver-
aging the two different diffusivity coefficients from Eqs. (13) and (14), and is expressed
by,

Km,t = (Km,t_entKm,t_loc)1/2. (21)

Equation (21) represents not only the entrainment, but also the free atmospheric mixing5

when the entrainment above the bottom of the inversion layer is induced by vertical
wind shear at PBL top. With the diffusion coefficients and counter-gradient correction
terms computed in Eqs. (1)–(21), the diffusion equations for all prognostic variables
(C,u,v ,θ,qv ,qc,qi) expressed as, for example for C,

∂C
∂t

=
∂
∂z

[
kc

(
∂C
∂z
−γc

)
−
(
w ′c′

)
h

(z
h

)3
]

(22)10

and can be solved by an implicit numerical method (Bright et al., 2002) that has been
built in WRF model. Here C is heat capacity, u and v are horizontal velocity compo-
nents, θ is the potential temperature, qv , qc, and qi are the mixing ratios of water vapor,
cloud, and cloud ice respectively. Note that the term −(w ′c′)h(

z
h)3 is an asymptotic en-

trainment flux term at the inversion layer and is not included in the MRF PBL model15

(Hong et al., 1996).
Since there are no interactions among horizontal grid points, the WRF YSU PBL

scheme is highly suited to massively parallel processing and great speed advantage
can be expected. What follows is a presentation of our GPU-based development on
YSU PBL scheme.20

8041

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3 GPU hardware specification

3.1 GPU device specification and basis of CUDA engine

We developed the massively parallel GPU version of the YSU PBL scheme using
NVIDIA Tesla K40 GPUs (NVIDIA Tesla GPU; NVIDIA Tesla K40), while Intel Xeon
CPU E5-2603 at 1.8 GHz is used for executing its counterpart CPU-based program for5

speedup comparison. The clock frequencies of memory and GPU processor (in boost
mode) are at 3004 and 875 MHz for K40, respectively. One Tesla K40 GPU has 15
Streaming Multiprocessors (SMX). Each SMX units has 192 CUDA cores, amounting
to 2880 cores. The hardware specification employed in our study is depicted in Fig. 2.
In contrast, our CPU system has two sockets, each of which has four cores.10

CUDA C is an extension to the C programming language and which offers a direct
programming in the GPUs. It is designed such that its construction allows for execution
in a manner of data-level parallelism. A CUDA program is arranged into two parts: a se-
rial program running on the CPU and a parallel part running on the GPU, where the
parallel part is called a kernel. The driver, in C language, distributes a large number of15

copies of the kernel into available multiprocessors and executes them simultaneously.
The CUDA parallel program automatically utilizes more parallelism on GPUs when
there are more processor cores available. A CUDA program consists of three compu-
tational phases: transmission of data into the global memory of the GPU, execution of
the CUDA kernel, and delivery of results from the GPU into the memory of CPU.20

From the viewpoint of the CUDA programming, a thread is the basic atomic unit
of parallelism. Threads are organized into a three-level hierarchy. The highest level is
a grid, which consists of thread blocks. A grid is a three-dimensional array of thread
blocks. A domain of 2-dimensional horizontal grid points, 433×308, is adopted in the
YSU PBL scheme (see Sect. 3.2), which implies that 433×308 threads are required if25

one GPU is used. Each thread executes the whole numerical calculation of equations
described in Sect. 2. Given the block size (i.e., number of threads per block) of 64 avail-
able, this suggests that one needs 7×308 blocks. Figure 3 illustrates the three-level

8042

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

thread hierarchy of a device for one GPU that was implemented in our study. Thread
blocks implement coarse-grained scalable data parallelism and they are executed in-
dependently, which permits them to be scheduled in any order across any number of
cores. This allows the CUDA program to scale with the number of processors.

The execution of CUDA programs can be achieved more efficiently in GPUs if the5

global memory is maximized and the number of data transactions is minimized. This
can be accomplished through the global memory access by every 16 threads grouped
together and coalesced into one or two memory transactions. This is the so-called co-
alesced memory access, which can be more effective if adjacent threads load or store
data contiguous and are aligned in memory. To enable the coalesced global memory10

access, the function in NVIDIA CUDA library “cudaMallocPitch” is used to pad the data,
which would enhance the data transfer sizes between host and device.

Threads of 32 are arranged together in execution, which are called a warp, while
global memory loads and stores by half of a warp (i.e., 16 threads). A CUDA program
group inside a multiprocessor issues the same instruction to all the threads in a warp.15

Different global memory accesses are coalesced by the device in as few as one mem-
ory transaction when the starting address of the memory access is aligned and the
threads access the data sequentially. An efficient use of the global memory is one of
the essences for a high performance CUDA kernel.

3.2 GPU-based implementation20

The current WRF programs are written in the Fortran language. To develop a GPU-
based and parallel implementation, the Fortran programs of YSU PBL scheme are first
translated to standard C programs, followed by converting the C into CUDA C that can
run on GPUs efficiently. Three major reasons for doing this way are (i) to ensure correct
results, (ii) to make the difference between C and CUDA C implementations to be very25

small, and (iii) to allow conversion from C programs to CUDA C programs in short time.
To test whether the programming of the YSU PBL scheme is correct, we used

a CONtinental United States (CONUS) benchmark data set, a 12 km resolution domain,
8043

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

collected on 24 October 2001 (CONUS website). This is a 48 h forecast over the con-
tinental US capturing the development of a strong baroclinic cyclone and a frontal
boundary that extends from north to south across the entire US The WRF domain is
a geographic region of interest discretized into a 2-dimensional grid point parallel to the
ground, which are labeled as (i , j) in the WRF codes and in the following discussion.5

Each grid point deals with multiple levels, corresponding to various vertical heights in
the atmosphere, which is denoted as k in both the programs and in the discussion pre-
sented below. The size of the CONUS 12 km domain is 433×308 horizontal grid points
with 35 vertical levels. Figure 4 exemplifies the mapping of CONUS domains onto one
GPU thread-block-grid domain.10

In generating correct C programs from Fortran, followed by the conversion from C
to CUDA C, considerable care must be taken. First of all, Fortran array-indexing uses
non-zero indices as the first index and these have to be converted into C/CUDA C
arrays using zero-based indexing. That is, the first index value of the Fortran arrays
in WRF codes is 1 or non-zero value, while that of a C/CUDA C array is 0. Secondly,15

some temporary array variables are replaced by scalar variables re-computed on GPU
memory as needed and stored in local register memory; we call these scalarable. This
is done because re-calculating values in GPU threads (i.e., local register memory) is
faster than transferring them from a relatively slower global memory.

The third area for special care relates to the handling of the horizontal grid point20

(i , j) inside the kernel. When translating C programs to CUDA C programs, the loops
for spatial grid points (i , j) are replaced by index computations using thread and block
indices:

i = threadIdx .x+blockIdx .x×blockDim.x

j = blockIdx .y25

where threadIdx and blockIdx are thread index and block index respectively, and block-
Dim the dimensional size of a block. Each grid point (i , j) represents a thread in CUDA
C programs. Hence, there are two purposes for decomposing the domain in this way.

8044

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

One is to make the execution in each thread independent from one another, and the
other is to compute values for all vertical levels (i.e., all k components in the CUDA C
programs) in one spatial grid position, (i , j). There are no interactions among horizontal
grid points, according to the physical model described in Sect. 2, which means that this
computationally efficient thread and block layout is permissible.5

Fourthly, to check whether a kernel is launched successfully, one way to do is to call
cudaGetLastError(). If the kernel launch fails, this command would report error mes-
sages right after CUDA kernel launch. Finally, once a kernel is successfully launched, to
obtain the correct GPU execution runtime, command cudaThreadSynchronize() must
be called.10

The default compiler options from WRF were used to compile the Fortran and C
versions of the YSU PBL scheme. For Fortran programs, we used gfortran along with
compiler options: -O3 -ftree-vectorize -ftree-loop-linear -funroll-loops. For C programs,
we used gcc with compiler options: -O3 -ftree -vectorize -ftree-loop-linear -funroll-loops
-lm. We have first verified that the outputs of C programs were identical to those of the15

Fortran programs using the same level of compiler optimization.
When the first CUDA C version of the YSU PBL scheme, directly translated from

C version without any optimization, was ready, we examined features of the original
Fortran programs to discover further optimization opportunities. We will present the
evolution of this scheme from a CPU basis to a parallel GPU basis in next section.20

4 Development of GPU-based YSU PBL scheme

4.1 Premise for optimizing GPU-based YSU PBL scheme

To perform the GPU-based YSU PBL scheme, the CUDA C programs were compiled
using nvcc (NVIDIA CUDA compiler) version 6.0 and executed on one Tesla K40 GPU
with compute capability 3.5. The compiler options are –O3 –gpu-architecture sm 3525

-fmad=false -m64 –maxrregcount 63 –restrict. The value of 63 means the number of

8045

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

registers per thread, which was randomly picked at present. Besides, the thread block
size (i.e., threads per block) was chosen as 64 at this stage. The effects of block size
and registers per thread for performing this scheme will be discussed in Sects. 4.5 and
4.6 respectively. Table 1 lists the runtime and speedup of this first-version GPU-based
scheme, where the speedup is calculated as GPU runtime as compared to its CPU5

counterpart running on one CPU core of Intel Xeon E5-2603. The same definition of
speedup calculation is used in subsequent discussions.

Before we go further to present our optimizations on the GPU-based YSU PBL
scheme, a couple of things are worthwhile to mention. The computation of this scheme
is merely one sub-process of the entire WRF module. When WRF is fully implemented10

on GPUs, the inputs for this process will not have to be transferred from CPU memory.
Instead, they will be results from previous WRF sub-processes. Similarly, outputs of
this sub-process will be inputs to next WRF sub-processes. Hence, transfers to/from
CPU memory are not involved in this process during its computation. In the studies pre-
sented in Sects. 4.1–4.8, I/O transfer timings are turned off. The results of computing15

performance with I/O transfer and multi GPUs will be given in Sect. 4.9. In each evolu-
tion of optimization, the correctness of CUDA C outputs must be verified in comparison
to the original Fortran outputs.

4.2 Optimization with more L1 cache

For each Tesla K40 GPU (see Fig. 2), every SMX has a data cache, which is shared20

among CUDA cores. The data cache can be configured as 16 KB software-managed
cache called shared memory and 48 KB hardware cache (L1) or the other way around,
or both can share equally the memory, i.e. 32 KB each.

To employ more L1 cache than shared memory, a command “cudaFuncCacheP-
referL1” was launched in our CUDA C programs. In contrast, without this command25

indicates less L1 cache than shared memory. Figure 5 depicts the memory allocation
between L1 cache and shared memory with and without launching L1 cache command.

8046

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Starting with the first CUDA C version of the YSU PBL scheme, the computing per-
formances with L1 cache command was found to be better than without this command.
This suggests that usage of more L1 cache helps to speed up the CUDA C programs
for this scheme. The GPU runtime and speedup are summarized in Table 2 after L1
cache command “cudaFuncCachePreferL1” is launched.5

4.3 Optimization with scalarizing temporary arrays

Due to the parallelism architecture in CUDA programs, each thread must have its own
local copy of the temporary array data. For instance, for 3-dimensional arrays, when
they are converted from CPU-based implementation to GPU-based implementation,
they are retyained as 3-dimensional, but 1-dimensional and 2-dimensional arrays that10

involve with k (height) components must be re-arranged as 3-dimensional arrays in
GPU-based implementation; otherwise, the access to the contents of the arrays could
be some other computed values from other threads. One special case is that the 2-
dimensional arrays with (i , j) elements, are still kept as arrays with (i , j) elements be-
cause what each thread deals with is the grid point (i , j). By so arranging arrays, which15

is necessary in GPU-based implementation, memory usage is considerably increased,
and the computing performance degraded. Figure 6 illustrates the concepts of such
array re-arrangement.

One solution of such a problem is to reduce the use of loop operation in the CUDA
programs by merging several loop operations into one single loop operation. With this20

approach, some scalarable temporary arrays are replaced by scalar variables. Owing
to the structure of WRF model, this approach can only be applicable to those scalarable
temporary arrays in the vertical-level (i.e., k) components, not in the grid-point compo-
nent (i.e., i or j). The scalar variables are re-computed in fast local memory, rather
than in the slower global memory, in order to reduce the access time. This approach25

of diminishing the number of loop operations is applicable to CPU-based programs.
However, the computation are still executed in one single-threaded core by looping
through all horizontal grid points (i , j), and it would not much speed up the computing

8047

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

performance. In contrast, this loop-reduction approach is extremely useful for GPU-
based programs due to its multi-threaded nature.

Figure 7 illustrates the concept presented here. This reduces the transferring of data
from global memory and delivers significant time savings. For this YSU PBL scheme,
such replacement of temporary arrays by scalar variables drops the temporary arrays5

from 68 down to only 14 arrays, and apparently enhances the computing performance
by a lot. Table 3 summarizes the GPU runtime and speedup after scalarizing most of
temporary arrays.

4.4 Optimization with height dependence release

The remaining 14 local arrays present difficulties because the k components of10

the vertical heights are not independent with one another. This can be seen from
Eq. (22) when one tries to solve the diffusion equations for those prognostic variables
(C,u,v ,θ,qv ,qc,qi), where there is dependence in the vertical z level (i.e., k compo-
nent in the codes). These 14 local arrays are involved in the final solution calculation
for those prognostic variables. For the first part of these 14 array variables involved, the15

calculation of the kth component depends on the input of the (k−1)th component. This
is to calculate the contents inside the brackets in Eq. (22), which is a differential equa-
tion as a function of the vertical height and is related to calculations in Eqs. (1)–(21). For
the second part, the calculation of the kth component needs inputs from the (k +1)th
component. This is to carry out the final results for those prognostic variables, which is20

again a derivative equation with respect to the vertical height.
About one third of the original Fortran programs appears to involve dependencies

among (k −1)th, kth, and (k +1)th components. Figure 8 describes the conceptual
idea for how to release the height dependence in order to reduce the access time to the
global memory. This is the most time-consuming part in the physical programs. Table 425

gives the GPU runtime and speedup after the release of the height dependence.

8048

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.5 Impact of block size on GPU-based YSU PBL scheme

The impact of the thread block size on the computing performance of the GPU-based
YSU PBL scheme was evaluated by varying the block size while keeping the registers
per threads at 63. Figure 9 shows the speedup of the optimized CUDA C programs (see
Sects. 4.2–4.4) vs. the block size for cases with and without coalesced memory access.5

To obtain this plot, 16 executions of the CUDA C programs are executed in a row for
each given block size. Excluding the first three runtimes due to unstable computing
performance, the remaining runtimes are averaged and used for the average speedup
calculation for the given block size. From this study, it was found that the block size of
64 could produce the best performance; this is what we used in Sects. 4.1–4.4.10

In addition, when the block size is a multiple of 32 threads, i.e., a warp, it was found
that the computing performance is better than the neighboring block sizes, which forms
a cycle of oscillation every 32 threads. This is understandable because threads of 32
are grouped together and the multiprocessor issues the same instruction to all the
threads in a warp in order to make execution more efficiently. This is one of the merits15

of GPU architecture.

4.6 Impact of registers per thread on GPU-based YSU PBL scheme

By keeping the block size at 64, the optimized CUDA C version of the YSU PBL scheme
was studied for speedup vs. the number of registers per thread. Similar to the approach
presented in the previous section, given a number of registers per thread, 16 executions20

of the CUDA C programs are performed and only the last 13 runtimes are used in
calculating the average speedup. The results are displayed in Fig. 10 for cases with
and without coalesced memory access. This figure shows that the optimal computing
performance occurs at 63 registers per thread for this scheme, and the speedups seem
to keep dropping beyond this number of registers.25

8049

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.7 Data transfer between CPU and GPUs

Usually the time consumed by kernel execution is less than the time occupied by the
data transfer between CPU (i.e., host) and GPUs (i.e., devices). Using the optimized
CUDA C programs of the YSU PBL scheme along with the optimal registers/thread= 63
and block size= 64 just obtained previously, Table 5 lists the GPU runtimes for cases5

with and without coalesced memory access. In the YSU PBL scheme, there are 17
3-D-array variables, 17 2-D-array variables, and two 1-D-array variables needed to be
input from CPU to GPUs, amounting to 326 475 352 bytes. For the outputs, this scheme
need transfer seven 3-D-array variables and seven 2-D-array variables from GPUs back
to the CPU, corresponding to 134 430 912 bytes in total. The data size of the outputs10

is about 41 % of that of the inputs, which indicates rough consistency with the runtime
taken by device-to-host data transfer as compared to that by host-to-device data copy.
This is shown in Table 5, where the I/O transfer involved here is synchronous memory
access.

This supports the general finding that data transfer between CPU and GPUs takes up15

a lot of time, and apparently is a limited factor for the speedup. Since the computation
of this scheme is only one sub-process of the entire WRF model, and what we are
more interested is its speedup with no I/O transfer, for the reasons given in Sect. 4.1.

However, when I/O transfer is considered, the use of asynchronous memory access
to overlap CUDA kernel execution with data transfer can be applied. Each Tesla K4020

has one copy engine and one kernel engine, allowing data transfer and kernel exe-
cution to overlap. As commands pipeline, streams execute commands in a manner
of first-in-first-out (FIFO) order. The stream arrangement would result in overlapping
CPU-to-GPU and GPU-to-CPU memory transfers and kernel execution on GPUs with
two copy engines. A diagram that depicts the execution timeline of the YSU PBL com-25

putation process is illustrated in Fig. 11, where the illustrated three streams are in
different colors. When asynchronous memory access is taken into account, the results
of computing performance are listed at the last row of Table 5. It indicates that using

8050

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

asynchronous access, together with coalesced memory transfer, seems to help reduce
the total runtime for this scheme.

4.8 Output comparison between CPU-based and GPU-based programs

It was found that the GPU-based programs of the YSU PBL scheme were sensitive
to precision. Two key issues we encountered were: special functions such as powf(),5

expf(), sqrtf(), and the compiler option for the math calculation. Firstly, when C pro-
grams were converted to CUDA C programs, the special functions taken from GNU C
library source codes must be modified to be used by GPU devices; otherwise incorrect
outputs emerge (in comparison to Fortran outputs) if CUDA C built-in special functions
were used. Secondly, when the compiler option of math calculation, “-use_fast_math”10

was employed to compile CUDA C programs, incorrect outputs of some variables would
appear, again, as compared to Fortran outputs. This compiler option made the CUDA
C programs run faster, but it could not produce outputs identical to the Fortran outputs.
Thus another math-calculation option “-fmad=false” was chosen.

A mathematical function causing the highest unit in the last place (ulp) difference15

between GNU C math library and CUDA C functions is the power function. In Fig. 12,
ulp differences for power function in GPU CUDA C library with and without fast math
option are compared to the GNU C mathematical library. The library function for the
power function is powf(x,y). In the plot, x stars from value 500.37420654296875 and y
has a constant value of 0.9505939483642578125. The spacing of the value x in the plot20

is non-equal as each consecutive value is derived from the previous value by adding
one ulp to the previous value. Thus, the plot shows ulp values for 150 consecutive 32-
bit floating point values starting from the first value. For these example values, the ulp
ranges from 0 to 10 with fast math. Without fast math, the maximum ulp value is three.
Due to error cascading effects in the chaotic YSU PBL algorithm, an ulp error of three25

is capable of causing a large error in the final output. In order to get exactly the same
results for the math functions on GPU and CPU, we adopted GNU C math libraries for

8051

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

GPU execution by adding CUDA C device execution qualifiers to the existing C source
code.

The root-mean square error (RMSE) is employed to make a comparison between
the CUDA C outputs of a variable and Fortran outputs of the same variable by ag-
gregating over all grid-point elements of this variable. The comparison of the maxi-5

mal RMSE for those variables having different CUDA C outputs from Fortran outputs
are listed in Table 6a. In addition, as mentioned above, the fast math compiler option,
–use_fast_math, may allow us to execute much faster, but it produces less accurate
results. Furthermore, the built-in GPU CUDA C special functions are also able to make
programs run faster, but again with less accuracy. Table 6b lists the comparison of the10

speedups for four different running situations. From these studies, it is found that the
option “-fmad=false” along with our own modified special functions can make our CUDA
C programs produce outputs identical to Fortran outputs, albeit with less speedup.

4.9 Multi-GPU implementation

Our multi-GPU setup is displayed in Fig. 13. In this setup, there are two Tesla K40 GPU15

cards, each of which has one GPU. Multi-GPU implementation of the YSU PBL scheme
is performed by computing several contiguous j-dimensional values in the arrays within
the same GPU. With asynchronous access taken into account, the optimal numbers of
j dimensions for transfers between CPU and GPUs were found to be 26 for use of one
or two GPUs.20

Using the optimal block size= 64 and registers per thread= 63, the YSU PBL
scheme was executed on our multi GPUs setup. Table 7 lists the computation times
and speedups for single GPU and two GPUs with/without I/O transfer and with/without
coalesced memory access. We also ran the Fortran programs using one CPU socket
(4 cores), and the runtime and speedup are also listed in the same table.25

8052

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

5 Summary and future work

In this paper, we develop an efficient parallel GPU-based YSU PBL scheme of the
WRF model using NVIDIA Tesla K40 GPUs. From our study, the communication band-
width of data transfer is one of the main limiting factors for computing performance of
CUDA codes on GPUs. This limitation holds true for other WRF schemes as well. To5

ameliorate this problem, several crucial code changes made to improve the comput-
ing performance. For example, we launched L1 cache with more memory than shared
memory; some temporary arrays have been scalarized; and the dependence among
the vertical-level components has been freed. In addition, the effects of threads per
block and registers per thread on the GPU-based YSU PBL scheme were studied. We10

also discussed how the compiler options for math calculation would affect the outputs
of the GPU-based programs. At the end, we came up with an optimized GPU-based
YSU PBL scheme with outputs identical to the CPU-based Fortran programs.

When WRF is fully implemented on GPUs, the implementation of input/output trans-
fers between CPU and GPU(s) will not be needed for each intermediate sub-process.15

Instead, only inputs to the first WRF sub-process have to be transferred from CPU to
GPU(s), and only the outputs from the last WRF sub-process will be transferred from
GPU(s) to CPU. The YSU PBL scheme is only one sub-process of the entire WRF
model. Therefore, the speedups for the YSU PBL scheme are expected to be close
to the results presented in the cases without I/O transfer rather than to those with I/O20

transfer.
Using one NVIDIA Tesla K40 GPU in the case without I/O transfer, our optimization

efforts on the GPU-based YSU PBL scheme can achieve a speedup of 193× with
respect to one CPU core, whereas the speedup for one CPU socket (4 cores) with
respect to one CPU core is only 3.5×. We can even boost the speedup to 360× with25

respect to one CPU core when two K40 GPUs are applied; in this case, one minute of
model execution on dual Tesla K40 GPUs will achieve the same outcome as six hours
of execution on a single core CPU.

8053

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Our future work is to continue accelerating other parts of WRF model using GPUs.
Eventually, we expect to have a WRF model completely running on GPUs. This will
provide a superior performance for weather research and forecasting in the near future.

Acknowledgements. This work is supported by the National Oceanic and Atmospheric Admin-
istration (NOAA) under Grant No. NA10NES4400013. B. Huang would like to thank Stanley5

Posey of NVIDIA for donating Tesla K40 GPUs. The authors are also grateful to James E.
Davies of Space Science and Engineering Center at University of Wisconsin-Madison for pro-
fessional editing of this manuscript.

References

Betts, A., Hong, S.-Y., and Pan, H.-L.: Comparison of NCEPNCAR reanalysis with 1987 FIFE10

data, Mon. Weather Rev., 124, 1480–1498, 1996.
Bright, D. R. and Mullen, S. L.: The sensitivity of the numerical simulation of the southwest

monsoon boundary layer to the choice of PBL turbulence parameterization in MM5, Weather
Forecast., 17, 99–114, 2002.

Continental US (CONUS): WRF V3 Parallel Benchmark Page, Single domain, medium size,15

12 km CONUS, Oct. 2001, available at: http://www2.mmm.ucar.edu/wrf/WG2/benchv3/#_
Toc212961288, 18 June 2008.

Durran, D. R. and Klemp, J. B.: The effects of moisture on trapped mountain lee waves, J.
Atmos. Sci., 39, 2490–2506, 1982.

Hong, S.-Y. and Pan, H.-L.: Nonlocal boundary layer vertical diffusion in a Medium-Range Fore-20

cast model, Mon. Weather Rev., 124, 2322–2339, 1996.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment

of entrainment processes, Mon. Weather Rev., 134, 2318–2341, 2006.
Horn, S.: ASAMgpu V1.0 – a moist fully compressible atmospheric model using graphics pro-

cessing units (GPUs), Geosci. Model Dev., 5, 345–353, doi:10.5194/gmd-5-345-2012, 2012.25

Kim, J. and Mahrt, L.: Simple formulation of turbulent mixing in the stable free atmosphere and
nocturnal boundary layer, Tellus A, 44, 381–394, 1992.

Klingbeil, G., Erban, R., Giles, M., and Maini, P. K.: Fat versus thin threading approach on
GPUs: application to stochastic simulation of chemical reactions, IEEE T. Parall. Distr., 23,
2, 280–287, doi:10.1109/TPDS.2011.157, 2012.30

8054

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www2.mmm.ucar.edu/wrf/WG2/benchv3/#_Toc212961288
http://www2.mmm.ucar.edu/wrf/WG2/benchv3/#_Toc212961288
http://www2.mmm.ucar.edu/wrf/WG2/benchv3/#_Toc212961288
http://dx.doi.org/10.5194/gmd-5-345-2012
http://dx.doi.org/10.1109/TPDS.2011.157

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Louis, J. F.: A parametric model of vertical eddy fluxes in the atmosphere, Bound.-Lay. Meteo-
rol., 17, 187–202, 1979.

Mielikainen, J., Huang, B., Huang, H.-L. A., Goldberg, M. D., and Mehta, A.: Speeding up the
computation of WRF double moment 6-class microphysics scheme with GPU, J. Atmos.
Ocean. Tech., vol 30, 2896–2906, doi:10.1175/JTECH-D-12-00218.1, 2013.5

Moeng, C. H. and Sullivan, P. P.: A comparison of shear and buoyancy-driven planetary bound-
ary layer flows, J. Atmos. Sci., 51, 999–1022, 1994.

Noh, Y., Cheon, W. G., Hong, S.-Y., and Raasch, S.: Improvement of the K-profile model for the
planetary boundary layer based on large eddy simulation data, Bound.-Lay. Meteorol., 107,
401–427, 2003.10

NVIDIA: Tesla GPU Accelerators, available at: http://www.nvidia.com/content/tesla/pdf/
NVIDIA-Tesla-Kepler-Family-Datasheet.pdf, October 2013.

NVIDIA: Tesla K40 versus K20 GPU, available at: http://blog.xcelerit.com/
benchmarks-nvidia-tesla-k40-vs-k20x-gpu/, November 2013.

Overview of WRF Physics: available at: http://www2.mmm.ucar.edu/wrf/users/tutorial/201301/15

dudhia_physics.pdf, April 2013.
Paz, A. and Plaza, A.: Clusters versus GPUs for parallel automatic target detection

in remotely sensed hyperspectral images, EURASIP J. Adv. Sig. Pr., 35, 18 pp.,
doi:10.1155/2010/915639, 2010.

Price, E., Mielikainen, J., Huang, M., Huang, B., Huang, H.-L. A., and Lee, T.: GPU-Accelerated20

Longwave Radiation Scheme of the Rapid Radiative Transfer Model for General Circulation
Models (RRTMG), IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. (JSTARS), 7, 8,
3660–3667, doi:10.1109/JSTARS.2014.2315771, 2014.

Rustico, E., Bilotta, G., Herault, A., Negro, C. D., and Gallo, G.: Advances in Multi-GPU
Smoothed Particle Hydrodynamics Simulations, IEEE T. Parall. Distr., 25, 1, 43–52,25

doi:10.1109/TPDS.2012.340, 2014.
Siewertsen, E., Piwonski, J., and Slawig, T.: Porting marine ecosystem model spin-up using

transport matrices to GPUs, Geosci. Model Dev., 6, 17–28, doi:10.5194/gmd-6-17-2013,
2013.

Song, C., Li, Y., and Huang, B.: A GPU-accelerated wavelet decompression system with SPIHT30

and Reed-Solomon decoding for satellite images, IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens. (JSTARS), 4, 683–690, doi:10.1109/JSTARS.2011.2159962, 2011.

8055

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1175/JTECH-D-12-00218.1
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://blog.xcelerit.com/benchmarks-nvidia-tesla-k40-vs-k20x-gpu/
http://blog.xcelerit.com/benchmarks-nvidia-tesla-k40-vs-k20x-gpu/
http://blog.xcelerit.com/benchmarks-nvidia-tesla-k40-vs-k20x-gpu/
http://www2.mmm.ucar.edu/wrf/users/tutorial/201301/ dudhia_physics.pdf
http://www2.mmm.ucar.edu/wrf/users/tutorial/201301/ dudhia_physics.pdf
http://www2.mmm.ucar.edu/wrf/users/tutorial/201301/ dudhia_physics.pdf
http://dx.doi.org/10.1155/2010/915639
http://dx.doi.org/10.1109/JSTARS.2014.2315771
http://dx.doi.org/10.1109/TPDS.2012.340
http://dx.doi.org/10.5194/gmd-6-17-2013
http://dx.doi.org/10.1109/JSTARS.2011.2159962

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Troen, I. and Mahrt, L.: A simple model of the atmospheric boundary layer sensitivity to surface
evaporation, Bound.-Lay. Meteorol., 37, 129–148, 1986.

Wei, S.-C. and Huang, B.: GPU acceleration of predictive partitioned vector quantization for
ultraspectral sounder data compression, IEEE J. Sel. Top. Appl., 4, 677–682, 2011.

Wu, X., Huang, B., Plaza, A., Li, Y., and Wu, C.: Real-time implementation of the pixel purity in-5

dex algorithm for endmember identification on GPUs, IEEE Geosci. Remote S., 11, 955–959,
2014.

8056

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. GPU runtime and speedup as compared to one single-threaded CPU core for the first
CUDA C version of the YSU PBL scheme, where block size= 64 and registers per thread= 63
are used.

CPU runtime GPU runtime Speedup

One CPU core 1800.0 ms
Non-coalesced 36.0 ms 50.0×
Coalesced 34.2 ms 52.6×

8057

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 2. GPU runtime and speedup as compared to one single-threaded CPU core for the first
CUDA C version of the YSU PBL scheme after the L1 cache command “cudaFuncCacheP-
referL1” is applied, where block size= 64 and registers per thread= 63 are used.

CPU runtime GPU runtime Speedup

One CPU core 1800.0 ms
Non-coalesced 34.3 ms 52.5×
Coalesced 33.0 ms 54.5×

8058

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3. GPU runtime and speedup as compared to one single-threaded CPU core after further
improvement with replacing temporary arrays by scalar variables, where block size= 64 and
registers per thread= 63 are used.

CPU runtime GPU runtime Speedup

One CPU core 1800.0 ms
Non-coalesced 22.3 ms 80.7×
Coalesced 21.4 ms 84.1×

8059

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 4. GPU runtime and speedup as compared to one single-threaded CPU core after re-
leasing height dependence, where block size= 64 and registers per thread= 63 are used.

CPU runtime GPU runtime Speedup

One CPU core 1800.0 ms
Non-coalesced 10.74 ms 167.6×
Coalesced 9.29 ms 193.8×

8060

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 5. GPU runtime and speedup as compared to one single-threaded CPU core for data
transfer between CPU and GPIUs, where block size= 64 and registers/thread= 63 are used.

CPU runtime 1800.0 ms

GPU runtime Non-coalesced Speedup Coalesced Speedup

host to device 27.26 ms 30.69 ms
kernel execution 10.74 ms 167.6× 9.29 ms 193.8×
device to host 10.83 ms 20.39 ms
kernel+Sync I/O 48.83 ms 36.9× 60.37 ms 29.8×
with Async I/O 52.55 ms 34.3× 54.66 ms 32.9×

8061

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 6a. Comparison of maximal RMSE for those variables having different outputs from For-
tran outputs for four different combination cases, where “Spec” stands for special function. The
second to the fifth columns represent “-use_fast_math+ CUDA C built-in Spec”, “-fmad=false +
CUDA C built-in Spec”, “-use_fast_math + our own Spec”, and “-fmad=false + our own Spec”,
respectively.

Variables 2nd col. 3rd col. 4th col. 5th col.

Horizontal velocity u component 2.5e-04 1.1e-08 4.1e-06 0
Horizontal velocity v component 2.3e-04 1.0e-08 1.8e-06 0
Potential temperature (θ) 5.2e-05 1.0e-07 1.1e-06 0
Mixing ratio of water vapor (qv) 4.3e-08 1.3e-11 1.5e-09 0
Mixing ratio of cloud water (qc) 1.3e-08 4.7e-14 1.9e-12 0
Exchange coefficient 3.0e-00 2.9e-06 1.8e-03 0
PBL height 3.9e+02 1.3e-04 2.8e-02 0

8062

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 6b. Comparisons of speedups using one GPU for four different combination cases, where
“Spec” stands for special functions. The second to the fifth columns represent the same mean-
ings as those in Table 6(a). Note that the optimized GPU-based YSU PBL scheme along with
block size= 64 and register/thread= 63 is used in these comparison.

GPU-Based code
running conditions 2nd col. 3rd col. 4th col. 5th col.

Non-coalesced 208.9× 151.6× 193.1× 167.6×
Coalesced 311.2× 167.7× 250.3× 193.8×

8063

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 7. Results of runtime and speedup for CPU-based and optimized GPU-based YSU PBL
scheme, where block size= 64 and registers per thread= 63, along with compiler option “-
fmad=false” as well as our own modified special functions, are used.

CPU runtime Speedup
One CPU core 1800.0 ms
One CPU socket 509.0 ms 3.5×

GPU runtime Speedup
Without I/O Non-coalesced Coalesced Non-coalesced Coalesced
1 GPU 10.74 ms 9.29 ms 167.6× 193.8×
2 GPUs 5.80 ms 4.99 ms 310.9× 360.6×

GPU runtime Speedup
Async I/O Non-coalesced Coalesced Non-coalesced Coalesced
1 GPU 52.55 ms 54.66 ms 34.3× 32.9×
2 GPUs 35.88 ms 46.31 ms 50.2× 38.9×

8064

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 1. Illustration of PBL process (Overview of WRF Physics).

8065

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 2. Schematic diagram of hardware specification of one NVIDIA Tesla K40 GPU em-
ployed in our study.

8066

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 3. Three-level thread hierarchy of a device for one GPU utilized in our study: threads,
thread block, and grids of block.

8067

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 4. Mapping of the CONUS domain onto one GPU thread-block-grid domain, where the
size of the CONUS domain is 433×308 horizontal grid point with 35 vertical levels.

8068

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 5. Memory allocation of L1 cache and shared memory by launching “cudaFuncCacheP-
referL1” or not.

8069

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 6. Illustration for re-arranging arrays in CPU-based implementation to 3-D and 2-D ar-
rays in GPU-based implementation, where regular mathematical array syntax is used to ex-
press the arrays.

8070

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 7. Illustration of scalarizing temporary arrays by scalar variable in order to recalculate
values in the local memory rather than transferring them from global memory to local memory.
In this illustration , xa, xb, xc, ya, yb, yc are assumed to be scalarable, but za, zb, zc are
assumed to be un-scalarizable. Note that the regular mathematical array syntax is used to
express the arrays.

8071

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 8. Illustration for how to release height dependence in order to reduce the access time
to global memory for those temporary arrays which have dependence among the (k−1)th, kth,
and (k +1)th components. The left (right) figure is the original (modified) CUDA program.

8072

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 9. Speedup vs. threads per block (block size) for optimized GPU-based YSU PBL
scheme.

8073

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 10. Speedup vs. registers per thread for optimized GPU-based YSU PBL scheme.

8074

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 11. Asynchronous memory transfer among host-to-device memory transfer, GPU kernel
execution, and device-to-host memory transfer.

8075

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 12. Unit in the last place error for power function. Both fast math and no fast math GPU
options are compared to the GNU C math library.

8076

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

GMDD
7, 8031–8077, 2014

Development of
efficient GPU-based

WRF Yonsei PBL
scheme

M. Huang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 13. Schematic diagram of our multi-GPU setup.

8077

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8031/2014/gmdd-7-8031-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

